Structural and electronic properties of europium-doped SnO₂: first principle insights

Felipe Mondaca^{1*}, Francisco Calderón², Sergio Conejeros³ and Arturo Martínez⁴

¹Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt, Chile.

²Departamento de Física, Universidad Católica del Norte, Avda. Angamos, 0610, Antofagasta, Chile.

³Departamento de Química, Universidad Católica del Norte, Avda. Angamos, 0610, Antofagasta, Chile

⁴Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Coahuila, México.

*felipe.mondaca@uss.cl

Abstract

The CRYSTAL17 code [1] was used to apply the density functional theory (DFT) to rutile tetragonal tin oxide (SnO₂) with space group P_{42}/mnm . First, the crystalline structure of SnO₂ was modeled in a unit cell, which contains 2 atoms of tin and 4 atoms of oxygen. We employed different bases using the PBE functional to have a greater agreement with the lattice constant experimental. Second, in order to investigate the impacts of the Eu^{3+} impurity, the SnO₂ structure, with an oxygen vacancy (V_0) and two europium (Eu) atoms, was meticulously modeled in a $3 \times 3 \times 2$ supercell (Eu₂Sn₃₄O₇₁). The total energies of multiple $Eu_2Sn_{34}O_{71}$ supercell configurations were calculated and compared. It was discovered that when two Eu atoms are bonded through an oxygen atom and the V_0 is bonded to an Eu atom, the total energy is at its lowest. To account for the six unpaired f electrons in the Eu³⁺ cations, all Eu-doped supercell simulations were spin-polarized. The electronic properties such as the band structure, density of state (DOS), bandgap, and effective mass were predicted using HSE06 functional. The band structure and DOS predicts that SnO2 and Eu2Sn34O71 supercells exhibit insulator character. Furthermore, the Eu₂Sn₃₄O₇₁ supercell permits intraband f-f transitions that are otherwise prohibited in atomic Eu. This result is consistent with photoluminescence (PL) found for Eu-doped SnO_2 (ETO) films and nanoparticles in the visible red range. The characteristics of the ETO compound suggest that it could be a suitable phosphor material for reducing thermalization losses in solar cells [2].

Acknowledgements:

We would like to thank "Núcleo de Investigación No.7 UCN-VRIDT 076/2020, Núcleo de modelación y simulación científica (NMSC)" for the scientific support. F.A.C acknowledges support from CONACYT PAI 79170075. S.C. was supported by FONDECYT (Chile) through project 11171063.

References

[1] See, https://www.crystal.unito.it

[2] Y. Zhang, X. Jia, S. Liu, B. Zhang, K. Lin, J. Zhang, and G. Conibeer, Sol. Energy Mater. Sol. Cells. 225, 111073 (2021)