Fitting of New Classical Interatomic Potential for Nb_2O_5 in Phase H by means of advanced algorithms and First Principles calculations

<u>Gómez Fabián</u>^{1*}, Loyola Claudia^{1†}, and Valencia-Balvín Camilo² ¹Facultad de Ciencias Exactas, Departamento de Física, Universidad Andrés Bello, Sazié 2212, Piso 7, Santiago, Chile.

²Institulo Tecnológico Metropolitano ITM, calle 73 N° 76A-354 Vía al Volador, Medellín, Colombia. *fabian.gomez.ingfis@gmail.com, †claudia.loyola@unab.cl

Introduction

We present a novel inter-atomic potential for H phase of Niobium Pentoxide, $H-Nb_2O_5$, Figure 1. A polymorphic semiconductor with a wide band gap widely used on different technological applications [1]. Here, by using first-principles calculations of structures and energies, we determine a set of numerical parameters related to a specific functional form of inter-atomic potential [2]. By defining an inter-atomic potential for Nb_2O_5 , we can study complex, large-scale structures, which are out of the scope of standard first-principles simulations.

Figure 1: H-Nb₂O₅ phase structure of 29 Nb and 70 O atoms. The structure is monoclinic with lattice vectors a = 21.153 Å, b = 3.8233 Å, c =19.356 Å and angle $\beta = 119.8^{\circ}$.

The fitting technique combines the Genetic Algorithm and Particle Swarm Optimization to minimize the objective function related to the structure and data provided by *Ab Initio* calculations, using the MPI interface to support multiprocessing in search of every parameter aforementioned. Our results show a good agreement of the structural properties of Nb₂O₅ in the H-phase. Despite the large set of different stages present in Nb₂O₅, our results give clear insights into the scope of the inter-atomic potential and possible generalization for other cases. Our work is a step forward in understanding Niobium Pentoxide's phases and their application under different conditions.

Acknowledgements: All authors thanks to project DI-1320/REG from Universidad Andrés Bello. Simulations were made using two principal HPC clusters, Fenix http://www.matbio.cl, and NLHPC (ECM-02) https://www.leftraru.cl.

References

[1] Li, Yuncang et al. (2016). "Titanium-niobium pentoxide composites for biomedical applications". In: Bioactive Materials 1.2, pp. 127–131.

[2] Trinastic, J. P. et al. (2013). "Unified interatomic potential and energy barrier distributions for amorphous oxides". In: The Journal of Chemical Physics 139, p. 154506.