Física de Particulas

AC-LGADS in 4D-Tracking

William Brooks^{1,2,9†}, Cristian Peña^{3‡}, René Ríos^{1,4}, Claudio San Martín^{1,2}, Ryan Heller³, Christopher Madrid³, Artur Apresyan³, Wei Chen⁵, Gabriele D'Amen⁵, Gabriele Giacomini⁵, Ikumi Goya⁸, Kazuhiko Hara⁸, Sayuka Kita⁸, Sergey Los³, Adam Molnar^{3,6}, Koji Nakamura⁷, Alessandro Tricoli⁵, Tatsuki Ueda⁸, Si Xie^{3,6}, <u>Esteban Molina^{1*}</u>
¹Centro Científico Tecnológico de Valparaíso-CCTVal, Valparaíso, Chile ²Universidad Técnica Federico Santa María, Valparaíso, Chile ³Fermi National Accelerator Laboratory, Illinois, USA ⁴Universidad de La Serena, La Serena, Chile ⁵Brookhaven National Laboratory, New York, USA ⁶California Institute of Technology, California, USA ⁷High Energy Research Organization, Ibaraki, Japan ⁸University of Tsukuba, Ibaraki, Japan ⁹Millennium Institute for Subatomic Physics at the High-Energy Frontier (SAPHIR) of ANID, Santiago, CHile *emolinac92@gmail.com, †william.brooks@usm.cl, ‡cmorgoth@fnal.gov

Introduction

In experimental particle physics, the measurement of the trajectory of a charged particle is called tracking. With the trajectory information, we can obtain the momentum and energy of the particle.

Current technology, measures two or three-dimensional space trajectories. We present an indevelopment particle detection device called AC-coupled Low Gain Avalanche Diodes (AC-LGADs). These are a leap forward in tracking technology since they measure the trajectory and time of the charged particle with excellent resolution in the order of microns and picoseconds, respectively. Hence, they are known as 4D-Trackers.

This technology will improve many areas of experimental particle physics, such as particle identification, particle detection rate, and kinematical variables resolution. It also provides a valuable bridge to collaborate with prestigious scientific institutions like the Fermi National Accelerator Laboratory (Fermilab), and the California Institute of Technology (Caltech), among others.

Description

The research about AC-LGADs has two components: the *abroad work* which involves many institutions and has been working for some time now testing AC-LGADs manufactured by different labs[1], and the *local work* which has been recently formed (beginning of 2022) and has been working in the characterization of the readout board which is the circuit to which the AC-LGADs are wire bonded. The readout board is connected to an oscilloscope to measure the signals collected by the AC-LGADs.

Chile,22-24 noviembre 2022

Acknowledgments

The *local team* would like to thank the Fermilab scientists that provided the readout board for testing, and to Dr. Rodolfo Feick for arranging a VNA for us.

References

[1] R. Heller, *et al.*, Characterization of BNL and HPK AC-LGAD sensors with a 120 GeV proton beam (2022)